12 AWG Solar Installation Wire Run-Length and Power-Loss Cheat Sheet

Why Voltage Drop Matters

  • Efficiency & Performance: Every foot of wire adds electrical resistance, causing some voltage to be “lost” as heat rather than delivered to your inverter, charge controller, or batteries.
  • Lower Voltage Circuits Are More Affected: At 12 V or 24 V, even a few volts dropped can represent a large percentage of the total.
  • High Current & Long Runs Amplify Losses: Doubling the distance roughly doubles the voltage drop, while higher current also increases the drop proportionally.

Assumptions & Key Points

  1. Wire Resistance: Based on Solar Super Sonic 12 AWG (UL4703, 2 kV) PV wire with max. resistance @ 1.60 Ω per 1000 ft.
  2. Distances Listed: 6 ft, 10 ft, 20 ft, 30 ft, 50 ft, 100 ft, 150 ft, 200 ft, and 400 ft (one-way). The round-trip distance is 2 × (one-way).
  3. Currents: Showcasing with 5 A, 10 A, 15 A, 20 A, and 30 A systems. Actual current will vary by scenario. Wire gauges should be calculated using maximum anticipated currents and should be protected with fuses or other safety devices
  4. Voltage Drop Formula: Vdrop=I  ×  Rwire  ×  Round-Trip Distance1000V_{\text{drop}} = I \;\times\; R_{\text{wire}}\;\times\;\frac{\text{Round-Trip Distance}}{1000} where RwireR_{\text{wire}} = 1.60 Ω/1000 ft (for 12 AWG).
  5. Percentage Drop: %Drop=(VdropVsystem)×100%\%\text{Drop} = \Bigl(\frac{V_{\text{drop}}}{V_{\text{system}}}\Bigr)\times 100\% We show columns for 12 V, 24 V, 48 V, 100 V, 240 V, 600 V, 1000 V, 1500 V
  6. Disclaimers:
    • Real-world factors (e.g., temperature, humidity) will impact the actual voltage drop.
    • Always consult the National Electrical Code (NEC) or local guidelines for safe and compliant installations.
    • These tables illustrate trends. If you see very high percentages, you likely need thicker wire or higher system voltage.

Table A: 12 AWG @ 5 A

One-Way (ft) Round-Trip (ft) Voltage Drop (V) % @12 V % @24 V % @48 V % @100 V % @240 V % @600 V % @1000 V % @1500 V
6 12 0.10 0.83% 0.42% 0.21% 0.10% 0.04% 0.02% 0.01% 0.01%
10 20 0.16 1.33% 0.67% 0.33% 0.16% 0.07% 0.03% 0.02% 0.01%
20 40 0.32 2.67% 1.33% 0.67% 0.32% 0.13% 0.05% 0.03% 0.02%
30 60 0.48 4.00% 2.00% 1.00% 0.48% 0.20% 0.08% 0.05% 0.03%
50 100 0.80 6.67% 3.33% 1.67% 0.80% 0.33% 0.13% 0.08% 0.05%
100 200 1.60 13.33% 6.67% 3.33% 1.60% 0.67% 0.27% 0.16% 0.11%
150 300 2.40 20.00% 10.00% 5.00% 2.40% 1.00% 0.40% 0.24% 0.16%
200 400 3.20 26.67% 13.33% 6.67% 3.20% 1.33% 0.53% 0.32% 0.21%
400 800 6.40 53.33% 26.67% 13.33% 6.40% 2.67% 1.07% 0.64% 0.43%

Table B: 12 AWG @ 10 A

One-Way (ft) Round-Trip (ft) Voltage Drop (V) % @12 V % @24 V % @48 V % @100 V % @240 V % @600 V % @1000 V % @1500 V
6 12 0.19 1.60% 0.80% 0.40% 0.19% 0.08% 0.03% 0.02% 0.01%
10 20 0.32 2.67% 1.33% 0.67% 0.32% 0.13% 0.05% 0.03% 0.02%
20 40 0.64 5.33% 2.67% 1.33% 0.64% 0.27% 0.11% 0.06% 0.04%
30 60 0.96 8.00% 4.00% 2.00% 0.96% 0.40% 0.16% 0.10% 0.06%
50 100 1.60 13.33% 6.67% 3.33% 1.60% 0.67% 0.27% 0.16% 0.11%
100 200 3.20 26.67% 13.33% 6.67% 3.20% 1.33% 0.53% 0.32% 0.21%
150 300 4.80 40.00% 20.00% 10.00% 4.80% 2.00% 0.80% 0.48% 0.32%
200 400 6.40 53.33% 26.67% 13.33% 6.40% 2.67% 1.07% 0.64% 0.43%
400 800 12.80 >99% 53.33% 26.67% 12.80% 5.33% 2.13% 1.28% 0.85%

 


Table C: 12 AWG @ 15 A

One-Way (ft) Round-Trip (ft) Voltage Drop (V) % @12 V % @24 V % @48 V % @100 V % @240 V % @600 V % @1000 V % @1500 V
6 12 0.29 2.40% 1.20% 0.60% 0.29% 0.12% 0.05% 0.03% 0.02%
10 20 0.48 4.00% 2.00% 1.00% 0.48% 0.20% 0.08% 0.05% 0.03%
20 40 0.96 8.00% 4.00% 2.00% 0.96% 0.40% 0.16% 0.10% 0.06%
30 60 1.44 12.00% 6.00% 3.00% 1.44% 0.60% 0.24% 0.14% 0.10%
50 100 2.40 20.00% 10.00% 5.00% 2.40% 1.00% 0.40% 0.24% 0.16%
100 200 4.80 40.00% 20.00% 10.00% 4.80% 2.00% 0.80% 0.48% 0.32%
150 300 7.20 60.00% 30.00% 15.00% 7.20% 3.00% 1.20% 0.72% 0.48%
200 400 9.60 80.00% 40.00% 20.00% 9.60% 4.00% 1.60% 0.96% 0.64%
400 800 19.20 >99% 80.00% 40.00% 19.20% 8.00% 3.20% 1.92% 1.28%

 


Table D: 12 AWG @ 20 A

One-Way (ft) Round-Trip (ft) Voltage Drop (V) % @12 V % @24 V % @48 V % @100 V % @240 V % @600 V % @1000 V % @1500 V
6 12 0.38 3.20% 1.60% 0.80% 0.38% 0.16% 0.06% 0.04% 0.03%
10 20 0.64 5.33% 2.67% 1.33% 0.64% 0.27% 0.11% 0.06% 0.04%
20 40 1.28 10.67% 5.33% 2.67% 1.28% 0.53% 0.21% 0.13% 0.09%
30 60 1.92 16.00% 8.00% 4.00% 1.92% 0.80% 0.32% 0.19% 0.13%
50 100 3.20 26.67% 13.33% 6.67% 3.20% 1.33% 0.53% 0.32% 0.21%
100 200 6.40 >99% 26.67% 13.33% 6.40% 2.67% 1.07% 0.64% 0.43%
150 300 9.60 80.00% 40.00% 20.00% 9.60% 4.00% 1.60% 0.96% 0.64%
200 400 12.80 >99% 53.33% 26.67% 12.80% 5.33% 2.13% 1.28% 0.85%
400 800 25.60 >99% >99% 53.33% 25.60% 10.67% 4.27% 2.56% 1.71%
  • (100 ft @12 V => 53.33% is still <100, so it remains.
  • (200 ft @12 V => 106.67% => “>99%”; 24 V => 53.33% => <100.
  • (400 ft @12 V => 213.33% => “>99%”; 24 V => 106.67% => “>99%”.)

Table E: 12 AWG @ 30 A

One-Way (ft) Round-Trip (ft) Voltage Drop (V) % @12 V % @24 V % @48 V % @100 V % @240 V % @600 V % @1000 V % @1500 V
6 12 0.58 4.80% 2.40% 1.20% 0.58% 0.24% 0.10% 0.06% 0.04%
10 20 0.96 8.00% 4.00% 2.00% 0.96% 0.40% 0.16% 0.10% 0.06%
20 40 1.92 16.00% 8.00% 4.00% 1.92% 0.80% 0.32% 0.19% 0.13%
30 60 2.88 24.00% 12.00% 6.00% 2.88% 1.20% 0.48% 0.29% 0.19%
50 100 4.80 40.00% 20.00% 10.00% 4.80% 2.00% 0.80% 0.48% 0.32%
100 200 9.60 80.00% 40.00% 20.00% 9.60% 4.00% 1.60% 0.96% 0.64%
150 300 14.40 >99% 60.00% 30.00% 14.40% 6.00% 2.40% 1.44% 0.96%
200 400 19.20 >99% 80.00% 40.00% 19.20% 8.00% 3.20% 1.92% 1.28%
400 800 38.40 >99% >99% 80.00% 38.40% 16.00% 6.40% 3.84% 2.56%

 


Conclusions & Tips

  1. Beware of High % Drops at 12 V & 24 V

    • Even moderate distances become impractical above ~20 A if you want to keep voltage drop under 3–5%.
  2. Increasing System Voltage Decreases % Loss

    • If you’re designing larger or commercial PV systems, consider 48 V, 100 V, or even higher DC bus voltages.
  3. Use Thicker Wire for Long Runs

    • If these tables show excessive losses, you may need 10 AWG or 8 AWG (or thicker) for acceptable efficiency.
  4. Check Code Requirements

    • The National Electrical Code (NEC) and local regulations have ampacity, overcurrent, and conduit fill rules that might require larger gauges regardless of voltage-drop considerations.

By consulting these cheat-sheets, you can quickly see whether 12 AWG wire is suitable for your run length, current, and voltage. Generally, NEC recommends a voltage drop of 3% or less. If higher drop observed than desired, it’s time to shorten the cable runs, bump up wire size, or raise the system voltage to keep your solar installation efficient and code-compliant.